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An experimental study of the motion of small water droplets in a shock tube is reported. 
Droplet displacement data were obtained by means of reflected-light stroboscopic 
illumination for droplet diameters in the range 87-575pm, and for shock strengths, 
AP/P,, in the range 0-0018-0-3. The displacement data are fitted by means of best-fit 
polynomials in time, which are used to compute droplet velocities, accelerations, and 
drag coefficients. All of our drag coefficient data have values which are larger than the 
steady drag at the same Reynolds numbers. The differences are attributed to time 
changes of the relative fluid velocity V,. This may affect the size of the recirculating 
region and, therefore, the drag. In  particular, it  is argued that the drag is larger or 
smaller than the steady drag, depending on whether the dU,/dt is negative or positive, 
respectively. Our experiments, which were performed for dU,/dt < 0, confirm this 
expectation. Furthermore, it  is shown that the difference between steady and transient 
drag coefficients, at the same Reynolds number, depends only on the value of a 
parameter A = (p,/p,- 1) (D/U;)(dV,/dt) .  Here p p  and po are the densities of the 
droplets and of the surrounding gas, respectively, and D is the droplet diameter. In  
fact, in the Reynolds number range 3.2 < Re < 77, where multiple data are available 
having the same value of Re but having different values of A ,  the drag data can be 
expressed as C, = CDs(Re) - K A ,  where CDs(Re) is the steady drag at the instantaneous 
Reynolds number Re, and K is a constant of order 1. 

1. Introduction 
Situations in which small particles move in fluids often occur in a wide variety of 

natural and man-made flows. In  some of these, the motion of the particles plays an 
important role. For example, in rainclouds, the relative motion between cloud droplets 
that is induced by external fields, or by internal fluid forces of viscous origin, affects 
the efficiency of collisions between droplet pairs and, therefore, affects the droplet 
growth rate (Langmuir 1948; Saffman & Turner 1956; Mason 1971). Similarly, the 
relative motion between particles and carrier gas in rocket nozzles affects the rocket 
performance (Hoglund 1962; Marble 1963). 

In  order to understand some of the mechanical aspects of a fluid-particle system, 
one usually has t o  determine the particle’s motion relative to the carrier fluid. This 
requires a knowledge of the forces with which the fluid acts on the particles. Usually, 
these forces are expressed in terms of a drag coefficient, C,. In  the case of steady 
motion of rigid particles, this coefficient depends only on the Reynolds number, Re. The 
functional dependence of C, on Re has been determined analytically only for spherical 
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particles moving steadily at very small Reynolds numbers. For other values of that 
parameter, C, has been determined experimentally using a variety of techniques that 
lend themselves to steady measurements, such as measurements of terminal velocities 
of spheres falling in liquids. The results of many such measurements cover a wide range 
of Reynolds numbers and are collectively known as the ‘standard drag coefficient ’. 
Although these measurements are quite reliable, they are applicable only to rigid 
spheres moving steadily in a fluid. In  most real situations, however, the relative 
motion between sphere and fluid is unsteady, owing to unsteady external forces, or to 
accelerations of the fluid in which the spheres are embedded. Under such conditions, 
the forces on a sphere do not depend on the Reynolds number alone. Similarity 
arguments show that, then, the drag coefficient depends also on the relative accelera- 
tion between fluid and sphere. However, a t  present this dependence is poorly under- 
stood. For example, some authors have reported that the drag coefficient increases 
with acceleration (e.g. Lunnon 1926; Karanfilian & Kotas 1978); whereas others report 
the opposite effect (Ingebo 1965; Roos & Willmarth 1971). Further, some authors 
report that acceleration is of no importance (Rudinger 1963; Selberg & Nicholls 
1968) and ascribe the measured departures of C, from the standard value to effects 
other than acceleration. 

In  addition to the experimental studies mentioned above, there are several others 
that have also treated the effects of acceleration. The literature on the subject was 
reviewed by Torobin & Gauvin in 1960, who concentrated on studies related to solid 
particles. Earlier, Hughes & Gilliland (1952) had reviewed the literature on the 
mechanics of droplets. More recent experimental studies of spheres accelerating in 
fluids include some of those already mentioned, and those of Odar & Hamilton (1964), 
Hill (1973) and Reichman (1973). 

On the theoretical side, there have also been several studies dealing with accelerated 
motion, but most of these consider only small Reynolds number motions. These works 
are based on the unsteady Stokes equations (Ockendon 1968; Temkin 1972), or on 
Basset’s equation (Pearcey & Hill 1955) and yield results which are of limited validity. 
On the other hand there have recently appeared in the literature several numerical 
computations of the flow field around accelerating spheres which cover a much wider 
Reynolds number range. Included here are the works of Rimon & Cheng (1 969) and of 
Dennis & Walker (1972). However, these works study situations in which the sphere’s 
motion is prescribed, namely impulsive motion, whereas in most situations of practical 
interest the sphere motion is unknown. 

In  this work we report the results of an experimental investigation that was initially 
undertaken with the purpose of determining how single spheres respond to the highly 
transient flow fields that are created by the passage of a shock wave. The motivation 
for this work was an earlier experiment (Temkin 1970) which indicated that shock 
waves might induce rapid coalescence in an aerosol cloud. The effect, which was 
ascribed to relative motion between droplets, could not be quantified because of 
uncertainties associated with sphere motion in those conditions. 

In  the investigation reported here we have not used rigid spheres, mainly because 
of the difficulties associated with releasing them individually in a well-controlled 
fashion. Instead, we have used streams of water droplets that are produced by the 
well-known instability of a thin jet. However, using droplets instead of rigid spheres 
should bring about further departures from the standard drag because, in addition to 
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the internal circulation which may exist in the droplet, the droplet may deform 
significantly. The parameter which controls the deformation is the Weber number, We. 
This measures the magnitude of the fluid forces which tend to deform the droplets, 
relative to surface tension forces which tend to maintain the droplets’ spherical shape. 
Measurementsare available (e.g. Hanson, Domich & Adams 1963; Reichman & Temkin 
1974) which show that, for Weber numbers of the order 3-4, water droplets in air are 
shattered by suddenly imposed flow fields. Below those values the droplets do not 
break up but oscillate with amplitudes which may be large. In  this work we have 
performed some experiments to determine the amount of deformation below critical 
Weber numbers for breakup. It has been found that for a Weber number of 0.55 the 
maximum amplitude of the oscillation is about 0.12 initial diameters, and sub- 
stantially smaller at smaller Weber numbers. Thus, a criterion for the sphericity of 
water droplets moving in air is that the Weber number should be smaller than these 
values. Somewhat arbitrarily we have chosen the value We = 0.15 as giving the limit 
for spherical behaviour. 

Other authors have used criteria based on other parameters, for example, the 
Reynolds number. Thus, based on steady drag measurements reported by Beard & 
Pruppacher (1969), Pruppacher, Le Clair & Hamielec (1970) assumed that, for 
Reynolds numbers smaller than 200, water droplets could well be approximated as 
rigid spheres. This criterion is, for the data of Beard & Pruppacher, consistent with 
ours because the Weber number corresponding to those data were small. 

The main part of this investigation consists of measurements, in a shock tube, of 
water droplet displacements responding to the passage of weak shock waves. Another 
part relates to droplet deformation under the effects of the waves and will be reported 
separately. The droplets’ diameters used in our work ranged from 87 to 575pm, and 
the shock strengths varied from 0.0018 to 0.3. The corresponding Reynolds and Weber 
numbers varied from 1.2 to 952, and from 0.001 to 4, respectively. The displacement 
data are fitted by means of third degree polynomials in time. These are used to obtain 
droplet velocities and accelerations. Drag coefficients were obtained from these derived 
quantities by means of the usual definition of C,. However, in order to reduce the 
effects of deformation, we used only data with Weber numbers less than 0.15, although, 
in effect, most of our data have even smaller Weber numbers. 

Our drag coefficients have, in all cases, larger values than the standard drag. In  the 
larger Reynolds number range the differences are small, but increase with decreasing 
Reynolds numbers. The departures from the standard drag-curve are similar in nature 
to those found by other investigators, but are of smaller magnitudes and correspond 
to lower Reynolds numbers. 

Arguments are given in terms of the fluid velocity, relative to an observer moving 
with the sphere, which indicates that when this relative velocity increases in time, the 
drag should be smaller than the steady, and that, when it decreases in time, the drag 
should be higher than the steady. In  our tests we always have dU,/dt < 0, where U, is 
the magnitude of the relative velocity, so that for the same Reynolds number our 
drag should be larger than the steady drag. To test this prediction one should observe 
the variations of C, versus acceleration for fixed Reynolds numbers. Unfortunately, 
our results contain only relatively few data points having equal Reynolds numbers 
but different values of the relative acceleration. Nevertheless, these data display 
the trend that is predicted by our relative-velocity arguments. Also, they show that 
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the difference between transient and steady values depends only on the relative 
acceleration. We therefore conclude that the differences between our drag results and 
those given by the standard drag are due to unsteady effects associated with the 
recirculating region in the rear of the sphere. However, this conclusion should be tested 
by additional experiments in which the relative acceleration dU,/dt can have both 
positive and negative values. 

2. Droplets' equation of motion 
Here we obtain a relation for the drag coefficient, C,, and for the Reynolds number, 

Re, in terms of the data $hat are measured in our experiments. The basic equation is, 
of course, 

Here mp = (7r/6) D3pp is the mass of the droplet, p p  its density, D its diameter, and 
up its velocity. The quantities on the right-hand side represent, respectively, the 
external forces and the fluid forces acting on the sphere. In  our experiments the only 
external force is that due to gravity. Thus = mp 9, where 9 is the acceleration due to 
gravity. The forces on the sphere due to the surrounding fluid are usually expressed 
in terms of a drag coefficient C,. Since in our experiments both the droplets and the 
surrounding fluid are in motion, it is convenient to use, in the definition of C,, the 
relative velocity between fluid and sphere. Thus, if the velocity of the fluid is denoted 

Two points arise in regard to this definition. First, the definition assumes that all of 
the fluid forces can be taken into account by means of C,. That this is not the case may 
be easily seen by considering the case of very small Reynolds number unsteady flow. 
Here, as is well known, the fluid forces are due to a viscous drag, to an acceleration 
reaction and to 'history' effects. Thus, the best that can be said about CD as defined 
above is that it represents, instantaneously, the combined effects of several types of 
fluid forces, some of which depend on the entire history of the motion. The second 
point about (2) is that it contains a fluid velocity i7 whose meaning should be clarified. 
For one-dimensional flows, this velocity would represent the fluid velocity far from 
the sphere. For other cases, this definition is useless. Perhaps a better definition for 0 
is that it represents the velocity that the fluid would have at the instantaneous location 
of the sphere's centre, had the sphere not been there. With these points in mind, we 

In  our experiments, the droplets move in a plane. Thus, if we let the z and y axes of a 
Cartesian system of co-ordinates fall on that plane, then the 2 and y components of (3) 
are, respectively, r D 2  - - 

m 3 = c D - + ~ ~ I u - u , \  (u-u,), at 4 (4) 
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Here up and wp are the x and y velocity components of the droplet, and u and v the 
respective velocity components of the fluid. One of these fluid-velocity components 
may be eliminated. Thus, dividing (4) by (5) and solving for w we obtain 

dv,/dt + g 
dup/dt 

w = v p + ( u - u p )  

This gives, for the magnitude of the relative velocity, 

This equation expresses C, in terms of quantities which may be determined 
experimentally. 

The results for C, are usually given in terms of the Reynolds number Re. This, in 
turn, is defined as usual, but with the relative velocity magnitude lD-Dpl = V,, 
playing the role of the characteristic velocity. Thus, 

where I D - up I is given by (7). 

3. Experimental apparatus and measurements 
The main components of the experimental apparatus used in this work were a 

horizontal shock tube, a droplet generator and a high speed photographic system. 
Some of the instrumentation used with these components is shown schematically in 
figure 1. The apparatus is briefly described below. A more detailed description may be 
found elsewhere (Kim 1977). 

3.1. Shock tube 
A conventional shock tube facility was selected for our experiments because it provides 
easily controlled transient flows that have fairly uniform fluid velocities over a 
relatively large volume. The tube was made of aluminium and had a circular cross- 
section with an inside diameter of 6.35 cm, and with a length of 51 1 cm. The length of 
the driver section, 183 cm, and the distance between test section and the end of the 
tube were selected to maximize the test time for a tube of that length. For the condi- 
tions existing in our tests, the maximum test time was 10.8ms, nearly equal to the 
ideal test time that is predicted by linear theory, 2Ld/al, where L, is the driver’s length 
and a, is the speed of sound in the driven section. 

In  our droplet displacement experiments it was required that the shocks be weak. 
One of the reasons for this requirement was that we wanted to minimize droplet 
deformation. In  principle, this could be achieved by simply reducing droplet size. 
However, it was found that, below a certain size, it  became very difficult to produce 
droplets in a controlled manner. Now, in order to produce weak shocks in a shock tube, 
one requires small pressure differences between driver and driven sections. This 
necessitated the use of thin diaphragm material. In our earlier tests we used diaphragms 
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FIGURE 1. Experimental apparatus. 

made of commercially available cellophane film having a mean thickness of 0.0025 cm. 
This was the smallest thickness available, and was suitable for relative pressure 
differences, (p4-pl)/pl, of about 0.1 or larger, For smaller values of this ratio, the 
diaphragms would not break up evenly. Instead, the plunger would merely make a 
small opening in the diaphragm, thus allowing for a slow expansion of the pressurized 
air. This slow expansion would not produce the desired results. To overcome this 
problem, the diaphragm material was annealed by placing it in an oven at  a temperature 
of about 340”B’ for about 10min. At the end of this period, the cellophane would 
become very crisp. A measure of this ‘crispness’ was obtained by determining the 
energy needed to rupture the film. To this end, an Elmendorf Tearing Tester was used 
to  rupture both treated and untreated samples. When the required energies were 
compared, it was found that the annealed sample required only about 2-  of the energy 
required by the untreated sample. Also, the annealed material would disintegrate 
rapidly and uniformly over the entire cross-section of the tube when acted on by the 
plunger. By means of this technique we were able to produce controlled weak shock 
waves with initial pressure-difference ratios, ( p ,  -pl)/pl, as low as 0.0018. 

The most important flow quantity that is required in (7) is the horizontal flow 
velocity behind the shock wave, u2 in the usual shock tube terminology. In  conven- 
tional shock tube measurements, this quantity is obtained in terms of the shock speed 
by means of the normal shock equations. This procedure is adequate for sufficiently 
large shock overpressures, but may result in large errors otherwise. Since in our case 
we had very low pressure differences, we obtained u2 by measuring actual shock over- 
pressures with calibrated pressure transducers and by using the perfect gas normal 
shock relation 
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FIGURE 3. Droplet generator. 

In  this equation y is the ratio of specific heats, and the subindices 1 and 2 refer, as 
usual, to the properties in front of and behind the shock wave, respectively. 

Other flow properties that are required, such as po( = p2),  are also determined by 
means of the normal shock relations. These relations apply provided that the shock 
wave front is normal to the direction of propagation, Figure 2 (plate 1) shows shadow- 
graphs obtained in two of our tests. The circles appearing there are the shadows of 
water droplets falling across the tube. It may be seen that the shock fronts are fairly 
flat, a t  least in a relatively large area near the droplets where all of our measurements 
were made. 

3.2. Droplet generator 
The droplets required for our experiments are produced by means of the well-known 
capillary instability of laminar jets issuing from small orifices. In  our earlier tests we 
used hypodermic needles to obtain the thin jets. The droplet streams that were thus 
produced were sometimes unstable owing to lateral vibrations of the hypodermic 
needle. Presently, a modification introduced by Adam, Cataneo & Semonin (1971) is 
being used in which the needle is replaced by a small pinhole, and where the excitation 
of the disturbances is provided by a LZT bimorph transducer. 

Figure 3 shows a schematic diagram of the complete droplet generator arrangement. 
Distilled water was used to produce the droplets. Careful filtering of the water was 
necessary to remove suspended impurities which might obstruct the small pinhole 
apertures. These varied from 25 to 300pm in diameter. Droplets thus produced had 
diameters ranging from 8Gpm to about G00,um. The production of the 86pm droplets 
required much effort, as the 25pm pinhole used then had to be cleaned often. Figure 4 
(plate 2) shows photographs of two droplet streams thus produced. A transparent 
ruler with 1 mm subdivisions is included for comparison. The sizes of the droplets 
shown in those photographs are the smallest and the largest used in our experiments. 
Stable streams of intermediate sizes were also produced and used. Table 1 gives 
typical data related to the generation of droplet streams. The quantity d in the table 
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d (cm) D (om) f (Hz) h (cm) hf(crns-') AID ka P 
0.0025 0.0087 14500 0.029 422 3-34 0.42 2-20 
0*0050 0-0133 7 100 0.046 330 3.49 0.40 2.10 

0.030 0,0576 1560 0.1 63 254 2-83 0.64 3.54 

0.010 0.0256 4 050 0.105 426 4.1 1 0.31 3.61 
0.020 0.0469 2 100 0.166 350 3.55 0.39 4.15 

TABLE 1. Droplet generator parameters. 

represents the pinhole diameter, D the droplet diameter, f the frequency of the 
imposed disturbance, and h the spacing between any two consecutive droplets. 

The frequencies shown in the table were chosen because they provided the most 
stable streams (for given pinhole diameter and jet velocity), and the largest druplet 
spacing. Other frequencies could also be used, but without very stable results. 

Also given in that table are the initial droplets' vertical velocities, Af. These velocitieb 
are not, necessarily, terminal velocities. Rather, they more nearly correspond to the 
jet's exit velocities, and in most cases were larger than the terminal. For example, the 
terminal velocity of a 90pm droplet in air is about 20 cm s-l, whereas our 8 7 p m  
droplets were falling at velocities of the order of 400 cm s-l. On the other hand, the 
fa22ing vdocity of OUT 575prn droplets, 254 em s-1, is nearly equal to the terminal 
velocity corresponding to that size. 

Also given in the table are ratios of interdroplet distance to droplet diameter. It is 
seen that, typically, the droplet spacing is only a few droplet diameters. As will be 
explained later, this relatively short spacing is responsible for some inaccuracies in the 
drag coefficients that are computed by means of (8). 

The next column in the table lists values of ka, where k is the wavenumber of the 
disturbance, and u is a measure of the initial jet radius (which was not measured in 
every test).t These numbers are consistent with Rayleigh's theory for the temporal 
instability of a thin jet, which indicates that axisymmetric disturbances will grow 
exponentially for values of ka between 0 and 1, and with maximum growth rates for 
ku = 0.7. Our measured values of ka do not correspond to this maximum value 
because the disturbances had frequencies that were selected to increase the separation 
between the droplets and to increase the stability of the streams, i.e. they are a trade- 
off between large growth rates which, for ka < 0.7, increase with frequency, and maxi- 
mum separation which decreases with frequency. 

Finally, the table gives values of a parameter p defined by 

B = @r wj7 

where pi is the density of the liquid, and wj is the velocity of the jet. This parameter 
plays an important role in the theory of capillary jet instability that was presented 
recently by Keller, Rubinow & Tu (1973). These authors treated the spatial instability 
of the jet and found that for sufficiently low values of /3 other more unstable modes 
appear. Our values of ,5, however, fall in the instability region where the unstable modes 
are basically those predicted by Rayleigh. 

the volume of a cylinder of liquid of diameter 2a and length A. 
t The value of a is found, approximately, by equating the volume of a drop of diameter D to 
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FIQURE 5. Droplet-illumination system. 

3.3. Droplet photography 

As stated earlier, the trajectories of the droplets in our experiments were planar. This 
enabled us to use photographic techniques to obtain displacement data. However, 
because of the nature of the motion, high-speed photography was required. Of the 
several methods available for this purpose, we selected one in which stroboscopic light, 
scattered by the droplets, is recorded on photographic film. The main reason for 
selecting this method is that it can be used to record, on a single negative, the positions 
of the droplets a t  various instants, thus enabling us to compute trajectories with 
relatively high accuracy. Other methods include high-speed cinephotography, and 
a novel technique which takes advantage of the mode of operation of focal plane 
shutters (Temkin & Reichman 1972). However, cinephotography yields one droplet 
position per frame and is, therefore, not amenable to rapid or very accurate data 
analysis. The other technique requires a knowledge of the droplets' vertical velocity, 
and in our tests this is not known a priori. 

The technique we chose was used in conjunction with another which provides single, 
backlighted photographs of the type shown in figure 4. This type of photography is 
necessary to observe the shape of the droplets, and to determine their size. The 
illumination provided by this method (Koehler illumination) is very uniform in the 
objective field, and is largely responsible for the sharpness of the resulting photographs. 

Both reflected and backlighted illumination arrangements are shown schematically 
in figure 5. The 135" angle for the scattered-light method was selected mainly because 
of ease of operation and not because of a major lobe in the scattered-intensity pattern 
around the droplet. 

The light sources in both arrangements were the flash lamps of General Radio 
Stroboscopes Model 1538-A. At the setting used, these provide relatively intense 
flashes with a duration, at the one-third peak intensity, of less than a microsecond. 

The heart of the system is an electronic unit (General Radio Model 1541 Multiflash 
Generator) that is capable of producing up to sixteen consecutive voltage pulses in 
response to an input signal. The pulses can be used to produce the same number of 
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flashes from the stroboscopes at specified intervals. This interval is limited only by the 
stroboscopes’ capabilities. In  our case, the time interval was set a t  0.4ms on the 
instrument’s dial. (The exact interval was measured with a timer-counter.) Thus, the 
equivalent flashing rate was 2500 flashes s-l. 

Typical photographs obtained by the scattered-light method during a test are shown 
in figures 6 and 7 (plates 3 and 4). The photographs show the stream of droplets at  
various instants which include one before the arrival of the shock wave. The shock- 
induced flow is from left to right. It may be seen that all of the droplets in the droplet 
stream move to the right equal distances in equal times. This is indicated by the 
parallel positions of the stream obtained at various times. This is an important point 
about our measurements for it shows that the imposed fluid velocity profile, to which 
the droplets are responding, is uniform in the test area. Non-uniformities that might be 
present could be easily detected by this type of photography. 

The multiflash generator was triggered by a signal from one of the pressure trans- 
ducers, and its output pulses could be accurately timed in relation to the instant at  
which the shock wave would arrive a t  the location of the droplet streams. However, in 
order to obtain correct displacement data, it is necessary to determine whether each 
pulse resulted in a flash. This was done by means of a photomultiplier (Dumont Model 
6292) whose output, in response to the flashes, was recorded in a storage-type cathode 
ray oscilloscope (Tektronix Model 5103N). The actual number of flashes could be thus 
counted. It was found that, in all cases, the stroboscope did not respond to the second 
pulse from the multiflash generator. Thus, in figures 6 and 7, there are only 15 flashes. 
(The brightest stream on the left of those pictures was taken prior to the arrival of the 
shock a t  a more intense setting in the stroboscope.) The fact that one of the flashes is 
missing is of little consequence provided that its order, among the sixteen possible 
flashes, is known. 

Photographic negatives, such as those from which figures 6 and 7 were made, were 
used to determine droplet trajectories. However, while the horizontal displacement 
during one time interval is clearly unique, the vertical is not; that is, given a droplet 
location in the stream a t  one instant, its vertical location, the next illuminated 
instant, is not clearly evident in those photographs. Thus, unless special care and 
techniques are used, the resulting trajectories will be erroneous. We have used two 
techniques to determine the actual consecutive locations of the droplets. The first one 
makes use of the fact that, when the negatives containing the data are sufficiently 
enlarged, small irregularities appear in the droplet streams. For example, one or two 
droplets may be slightly misaligned with respect to the other clroplets, and this mis- 
alignment is preserved as the droplets move. Because of this, it is possible to make a 
one-to-one correspondence between the droplets at two consecutive instants. The 
second method makes use of the fact that the initial vertical velocity of the droplets 
can be determined from the photographs. Thus, it  is possible to estimate the distance 
it will travel down in one time interval, and this estimat.e will yield the location of the 
droplet at that time. This method was used only from time to time in order to test the 
accuracy of the other. 

Figure 8 (plate 5) shows typical results of such procedures. The figure is similar to 
those shown earlier, except that actual droplet trajectories are superimposed on the 
photographic data. 

Relative horizontal and vertical distances between successive points in the droplet’s 
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FIQIJRE 9. Effect of flow velocities on motion of 87 pm droplets. 

trajectory were measured directly from the negatives by means of a Bausch and Lomb 
25.4 cm Bench Contour Projector. This unit was equipped with a microscope that had 
a reticle graduated to 2pm, and having total magnifications of either 10 x or 35 x . 
The actual distances travelled by the droplets were obtained from these measurements 
by taking into account the magnifications of the camera and bellows and of the 
measuring system. The resulting vertical and horizontal displacements, together with 
other pertinent data, were then digitized for later analysis. 

All of the photographs were made with a Nikon F-2 camera equipped with bellows 
and with a 50mm lens mounted on the bellows in the reverse position. With this 
arrangement, magnifications of up to 4 x were possible. The actual calibration in each 
test was obtained by taking a photograph of a graduated reticle that was placed on 
the plane of the droplet stream. The camera and bellows assembly were rigidly 
mounted on an optical bench which also supported one of the light-illumination 
systems. The photographic emulsion used in most of the tests was Kodak Tri-X. No 
special development was found necessary. 

4. Data analysis 
Displacement data, of the type described above, were obtained for a wide range of 

droplet sizes and shock-induced velocities. In  total, 34 different combinations of 
these variables were used. The complete data may be found elsewhere (Kim 1977). 
Here, we show some of these data in graphical form, and describe the procedure used 
to analyse the data. 

The vertical and horizontal droplet displacement measurements result in trajectories 
of the type shown in figure 9. The figure displays partial trajectories of 87pm diameter 
droplets responding to the passage of shock waves of various strengths. The elapsed 
time since the passage of the shock is given by the number of data points on each 
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FIOWRE 11. Horizontal displacement versus time. D = 87 pm. 0, u, = 264 om 8-l; V, 
u, = 634 cm s-l; 0, u2 = 991 cm rl; a, u, = 1346 cm 8-l; A ,  ug = 2024 om 8-l. 

trajectory, the maximum elapsed time displayed being 3.25 ms in all trajectories. 
After the first symbol on each trajectory (obtained at 0.8 ms), the interval between any 
two data points in a given trajectory is about 0.4 ms. The curves show that, as expected, 
the horizontal displacement of the droplets increases with flow velocity. In fact, IM 

shown later, the dependence is approximately linear. On the other hand, the vertical 
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FIauRE 12. Vertical displacement versus time. D = 81 pm. 0, u2 = 264 cm 8-l; V, 
u2 = 634 cm s-l; 0, us = 991 cm s-l; 0, u, = 1346 om s-l; A ,  u, = 2024 cm 8-l. 

displacement is rather insensitive to the horizontal flow velocity, probably because 
of the initially high vertical velocity that the droplets have. Since the droplets' 
diameters were the same in all cases in the figure, this initial vertical velocity was also 
the same. 

Figure 10 shows partial trajectories of different-sized droplets responding to flow 
velocities of approximately equal magnitude. Since, now, the droplets' diameters are 
all different, the corresponding initial velocities also differ. This explains why the 
vertical displacement is not as uniform as that shown in figure 9. The horizontal data 
dispIay the expected result that smaller droplets are more easily displaced. 

The dependence of the motion on time is more easily grasped by plotting, separately, 
vertical and horizontal displacement data versus time. This is done in figures 11 and 12 
for the complete data corresponding to the trajectories of figure 10. 

Figure 12 is of interest because it shows that for these droplets the vertical displace- 
ment is nearly independent of the shock-induced velocity; i.e. the coupling between 
horizontal and vertical displacements appears to be small. The probable reasons for 
this are that the initial vertical velocities of the droplets were nearly the same for these 
droplets, and that they were relatively large (see table 1) .  

Data of the type shown in these figures were used to obtain best-fit polynomials in 
time for the vertical and horizontal displacements. The degree of the polynomials was 
selected by forming difference tables for the displacements. It was found that the error 
when fitting the data by means of polynomials was smallest if third-degree polynomials 
were selected (for details, see Kim, 1977). Thus, the horizontal and vertical displace- 
ment data are fitted by expressions of the form 

XI, = a + bt + C t 2  + dt3, 
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FIUURE 14. Effect of Weber number on velocity ratio u,,/uI. A ,  We = 0.317; 
0, We = 0.142; 0, We = 0.08; V, We = 0.035; 0, We = 0.008. 
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where the coefficients a, b, . . . , etc., are given together with the data. The polynomials 
are used to obtain absolute droplet velocity and acceleration components. 

As mentioned earlier, the data obtained in this work have a wide range of velocities 
and droplet sizes. Some of the results were obtained under conditions which resulted 
in appreciable droplet deformation and oscillation. These data are, therefore, valuable 
in that they provide additional information about the motion of deforming droplets. 
Here, however, we would like to select only those data for which droplet deformation 
is minimal. To do this, photographs of droplets in shock-wave flowfields were obtained 
for several Weber numbers above and below critical for breakup. Complete sequences 
of photographs leading to both breakup and to oscillations may be found elsewhere 
(Kim 1977) and will be reported in the future. Here, in figure 13 (plates 6 4 ,  we show 
three photographs of similarly sized droplets, obtained a t  about the same elapsed time, 
under the effects of shock waves of different strength. The maximum Weber numbers 
corresponding to each case are 6.3, 1.04 and 0-55. The fist case results in breakup 
(We, NN 3-3), whereas the last two result in droplet oscilIation. In  the last case, the 
frequency of oscillation is very nearly equal to the lowest mode of oscillation of 
liquid droplet that is derived from linear theory, but the oscillations are not symmetric 
as that theory predicts. The maximum amplitudes of oscillation in this case amount 
to about 12 yo of the initial diameter. 

For Weber numbers below this, the amount of deformation is relatively small, end 
was impossible to measure with our techniques. Arbitrarily, we used We = 0.15 a8 the 
value of the Weber number below which we believe deformation is no longer significant. 

One effect of our selection of this Weber number is that the trends displayed by 
some of the data appear to be similar. For example, figure 14 shows the time variations 
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FIGURE 15. Time variations of force on droplets during one test. 
D = 87 ,urn, us = 264 om 8-l. 

of up/uo, formed by taking the derivatives of the polynomials corresponding to the 
trajectories of figure 10 and by dividing the results by the corresponding flow velocities. 
It is seen that, except for two cases, the curves nearly coincide. The Weber numbers 
corresponding to the non-coinciding curves are 0.317 and 0.143. Thus, the departures 
from similarity may be interpreted as being caused by unequal droplet shapes, i.e. 
deformation. The effects are more pronounced with the curve for We = 0.317, but are 
also present in that with We = 0.143. This Weber number may, therefore, be taken as 
the dividing value below which deformation can be assumed to be small. We have, 
therefore, taken We = 0.15 as being the maximum Weber number that is used in our 
drag computations. Of our 34 trajectory data, fifteen have maximum Weber numbers 
below this number for the entire trajectories. Additional points could have been used 
by selecting those trajectories which initially had We > 0.15 but which, owing to a 
decrease of the relative velocity, would later have We < 0.15. We did not use such data 
points because our deformation study had shown that, once the oscillations were 
excited, they would decay rather slowly. 

Because of this limitation, the maximum Reynolds number for which drag data are 
given here is Re = 115. Higher Reynolds number data may also be used, but these will 
not apply to nearly spherical particles. The final results for the transient drag coefficient 
were computed from our data by means of (8). 

The results of these computations are given in appendix A of Kim (1977), together 
with other derived quantities. These include the forces on the droplet, and the Reynolds 
number. Figure 15 shows the magnitude of the fluid forces acting on a droplet during 
one test. The dependence of this force on time appears to be linear simply because we 
used third-degree polynomials in time to fit our displacement data. If the line is 
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FIGURE 16. Time variations of drag coefficient during one teat. 
D = 87 pm, u, = 264 cm a-1. 

continued to t = 0, one may get an idea of the magnitude of the forces that initially act 
on the droplets. These extrapolated values are probably smaller than the actual, but 
are nevertheless large. For example, for the case shown in the figure, the force at  t = 0 
is more than 50 times larger than the weight of the droplet. Also, this force is larger, 
by a factor of 2, than the force that would act on the droplet if the standard drag 
coefficient were applicable. 

Figure 16 shows the time variations of the computed drag coefficient corresponding 
to the forces of the previous figure. 

The changes of relative velocity are basically the same as those of the Reynolds 
number, which in each test decreases in time. Thus, the relative fluid velocity decreases 
in time during all of our tests (except, of course, immediately after the passage of the 
shock, when that velocity increases; this time is, however, very short compared to 
the time elapsed between the arrival of the shock and the first displacement data point). 
Finally, in figure 17 we present, as is customarily done, drag coefficient data verswl the 
Reynolds number. This figure includes all of our data having maximum Weber numbers 
less than 0.15. As we pointed out earlier, this factor eliminated from our final results 
data having larger Reynolds numbers. As we will show below, the lowest and the 
highest Reynolds number range data shown in figure 17 should also be eliminated, &B 

they may contain large amounts of error. 
In  order to estimate the overall accuracy of our data, an error-of-magnitude analysis 

was performed. This included an analysis of the possible errors involved in forming the 
higher-order derivatives of the displacement polynomials. Such an analysis does not 
appear to have been performed in past analyses of similar data. As might have been 
expected, the analysis shows that, for the very low shock-induced velocities, the errow 
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FIGURE 17. Drag coefficient data for We < 0.15. +, x , D = 87 pm; I>, D = 133pm; 
V ,  D = 256pm; a, D = 470pm; A ,  D = 575pm. 

associated with dup/dt and dvp/dt may be large. One reason for this is the uncertainty 
associated with the vertical fluid velocity v. Because this velocity is not usually taken 
into account in computations of droplet motions similar to this, we describe briefly 
its origin. First, we recall our definition of as being the fluid velocity at the location 
corresponding to the instantaneous centre of the sphere if the sphere were not there. 
Then, if one considers any droplet in the droplet stream, it becomes clear that its 
neighbours induce, owing to their motion, such a velocity a t  the location of the droplet 
under consideration. For example, before the passage of the shock wave, the induced 
velocity is mainly vertical because the location of the droplet is on the dividing stream- 
line of the flow relative to the other droplets. However, after the passage of the shock, 
the droplets will acquire a horizontal velocity component, so that the dividing stream- 
line will, in general, be inclined with respect to the droplet stream. It is therefore clear 
that in our tests the fluid velocity induced by the droplets has two components. 
Unfortunately, neither component can be experimentally determined. However, if 
the horizontal velocity induced by the droplets is small compared to the shock- 
induced velocity, u2, then we may neglect that component and calculate the other 
(v) by means of equation (6) with u = uz. This is the assumption that was made in order 
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FIGURE 18. Estimated direction of droplet wakes. 

to  obtain our drag data. The assumption may be accurate for some of the tests, but it 
is clearly not correct for those having very low values of u2. Also, in those low shock- 
induced velocity cases, an additional interaction arises which limits further the 
accuracy of the data. This may be seen in figure 18, where the initial and final directions 
of the wakes, calculated from the induced velocities, are schematically shown for 
three cases. These diagrams show that, for the case having the smallest value of u2, the 
droplets basically move in the wakes of their lower neighbours. 

The errors in C, and Re associated with these and other sources of inaccuracy have 
been estimated, and are given by Kim (1977) for all of the data having Weber numbers 
smaller than 0.3. For the purposes of computing a C,, Re correlation, we use only 
those data for which the fractional error in the Reynolds number is smaller than 15 yo 
throughout a run, and for which the maximum Weber number is 0.15. Seven runs with 
a total of 82 data points satisfy these criteria. These data and the estimated error bars 
for a few points in each run are shown in figure 19. The data have been fitted by 
means of a best fit, second-degree polynomial of the form 

C, = b, + b, Re-I+ b, Re-2. (11)  

The coefficients b,  and their standard deviations are given in table 2. The standard 
deviation of the entire fit is (r = 0.39. While the data are well fitted by (1  l ) ,  the corre- 
lation should not, in our view, be used as a drag correlation applicable to unsteady 
motions unless the unsteadiness is similar to that reported here. 

FIGURE 19. Variations of CD versus Re for runs having estimated errom of the measured Reynolds 
number smaller than 15 % . 

Data symbol 

0 
V 
n 
A 
rn 
0 
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Run no. 

2141 
1352 
2112 
2093 
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86 
87 
87 
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87 
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v, (ern 8-1) 

264 
678 
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1346 
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We(max .) 

0.008 
0.040 
0.035 
0.080 
0.050 
0.143 
0.117 
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Standard error n b* 

0 
1 
2 

0.69 
56-58 

482.40 

- 
4.40 

27.47 

TABLE 2. Regression coefficients for drag correlation and their standard errors. 

5. Discussion 
Also shown in figure 17 are lines representing the well-known Stokes and Oseen drag 

coefficients, and a line representing the steady or standard drag. This has been drawn 
by means of the polynomial fits for those data given by Morsi & Alexander (1972). The 
Stokes and Oseen drags are shown only for illustrative purposes, as the results they 
represent do not hold for the Reynolds number range shown in the figures. Comparison 
can be made only with the standard drag, which, however, was obtained by means of 
steady measurements. 

It is seen that our data always gives drag coefficients which are larger than the 
standard. Also, the differences between our data and the standard drag data increase 
with decreasing Reynolds numbers. We believe that the main reason for these 
differences is due to the unsteady effects that our droplets experience. Such effects 
cannot be grasped from figures 17 or 19, for those figures appear to imply that the drag 
coefficient is a function of the Reynolds number alone. It is clear, however, that un- 
steadiness, as measured by the acceleration of the droplets, for example, must also 
appear as a parameter. In  fact, an acceleration number defined as DuG2(dup/dt), or its 
inverse, has been used in the past, but there seems to be some confusion as to whether 
an absolute or a relative acceleration should be used. However, the fluid forces on the 
droplet depend primarily on the velocity of the fluid relative to the droplet. Also, 
changes in that velocity may affect the structure of the recirculating region in the rear 
of the sphere and, therefore, the drag. Accordingly, we measure the effects of unsteadi- 
ness in terms of the changes of V, = I fT - Ti,/ -the magnitude of the fluid velocity as 
seen by an observer moving with the sphere. Thus, instead of the above acceleration 

D dU, number we use 

U," dt 

This parameter may also be established directly from the equations of motion when 
these are referred to axes moving with the sphere. Other parameters that are needed 
to specify the drag coefficient on a droplet translating in an unbounded fluid include 
the Reynolds number, the Weber number, the ratio of fluid den8ity to sphere density, 
and the Mach number behind the shock wave, M2.t  Since we are considering only those 
data having minimal deformation, we can delete the Weber nupber from this list. 

t This list ignores several other effects which may be present, such aa droplet evaporation, 
internal circulation, and droplet rotation. Evaporation may be ruled out as its effects would be 
significant only in a time scale which is large when compared to the test time. On the other hand, 
internal circulation is established in a time of the order of R2/vwater, which, for our smallest 
droplets, is comparable to the test time. Further, owing to their method of production, the 
droplets' surfaces were probably free from impurities, and hence free to move. Therefore, circula- 
tion within the droplets probably occurred during the tests. However, its effects on the drag as 
well as on those due to possible rotation codd not be assessed. 

-- 
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Further, since our shocks are quite weak, compressibility effects may be neglected. 
Therefore, the drag coefficient for a rigid sphere which is translating unsteadily in an 
unbounded incompressible fluid that has been set impulsively into motion, may be 
expressed as 

This differs from the steady drag CDs in that CDs depends only on the Reynolds number. 
Therefore if C, is to agree with its steady counterpart when dU,/dt = 0, it is necessary 
that the dependence on the density ratio vanishes in that condition. It is therefore 
evident that the dependence on the last two parameters in (12) must appear through 
a single group in which functions of these parameters appear as factors such that the 
group vanishes when dU,/dt = 0. For simplicity we take the combination? 

although others are possible. This form has the additional advantage of vanishing, 
as it should, when the densities are equal. With this definition of A ,  we write (12) in 
the form 

CD = CD(Re, A ) .  (14) 

The dependence of C, on A for a given Reynolds number is, of course, unknown, 
but some of its features may sometimes be deduced by considering the changes of the 
relative fluid velocity past the droplet. Consider first the case A = 0 for some fixed 
Reynolds number Re. Here C ,  is given by its steady value CDs(Re) and this is given by 
the sum of a friction drag and a pressure drag. Now, suppose that the Reynolds 
number is such that a recirculation region exists1 on the rear side of the sphere. Then 
the pressure drag coefficient is a significant fraction of the total drag. Therefore, if the 
size of the recirculating region changes, the change should be reflected on the total 
drag coefficient, provided, of course, that the related changes of the friction drag are 
such that they do not mask those of the pressure drag. 

Consider now another case having instantaneously the same Reynolds number as 
that of the steady case considered above, but having dUJdt > 0. This acceleration of 
the free-stream velocity might be associated with a more favourable pressure gradient 
(relative to the steady case). This gradient would result in a smaller recirculation 
region, and therefore in a smaller drag. Similarly, when dUJdt < 0, the pressure 
gradient may be more adverse so that the recirculating region and the drag are 
expected to be then larger than their steady values. Thus, if the changes of pressure 
drag predominate, then, for a given Reynolds number, the drag coefficient is expected 
to be smaller or larger than the steady value depending on whether A is positive or 
negative, respectively.$ 

Our experimental results do not depend on this argument, and may therefore be 

t Form suggested by a reviewer. 
$ The Reynolds number for which the recirculation region does not exist is not known. 

However, some recent experimental results (Nakamurs, 1976) show that s, recirculating eddy 
exists for Reynolds number as low aa 7.3, the lowest Reynolds number tested. 

8 This argument is not expected to apply to all unsteady motions; for example to those 
motions where separation does not occiir. 
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C D  

FIQIJRE 20. Variations of CD versus - A  for several Reynolds numbers. 0, Re = 6; 
V ,  Re = 8.1; A, Re = 10.5; 0, Re = 20.5; 0, Re = 51. 

used to test it.? Unfortunately, in all of our experiments the quantity dU,/dt was 
negative, so that only part of the argument can be tested. Further, the number of data 
points having the same instantaneous Reynolds number, but having different values 
of A ,  is small. Nevertheless, our results display the expected trend, as may be seen in 
figure 20, where experimental values of C, (including steady values from the literature) 
are plotted versus - A  for several Reynolds numbers. All of these data clearly show 
that as the relative deceleration increases, the measured values of C, increase relative 
to the steady values. Also shown in figure 20 are dotted lines connecting our constant 
Reynolds number drag data with the corresponding steady values. This line does not 
represent experimental or theoretical data, but it is clear that, if experiments were 
performed for continuously decreasing values of 1 A ] ,  then curves not too unlike those 
shown in the figure would be obtained. 

The data shown in figure 20 may also be used to obtain some information about the 
dependence of C, on both Reynolds number and on the relative acceleration parameter. 
This is done by subtracting from each data point in the figure the steady value, C,,, 
corresponding to that particular Reynolds number. The result is shown in figure 21. 
It may be seen that the quantity CD(Re, A )  - CDs(Re) appears to be independent of the 
Reynolds number, i.e. C, = CDs +f(A), wheref(A) is a function of A alone. Also shown 
in figure 21 is the line g(A) = - A .  With the exception of points having small values of 
C, - CDs this line agrees surprisingly well with the data.$ Further, when the values of 

t It is not possible to compare the predicted trend with the results of numerical calculations 
or the flow around impulsively started spheres that are available in the literature (Rimon & 
Cheng 1969; Dennis & Walker 1971, 1972) because the pressure and friction contributions to the 
drag after separation are not given in any of these papers. 

$ Data points having small values of C D  - CDS should also be correlated with A .  This may be 
seen as follows. Small values of CD - CDS occur for small values of A ,  and for these a power series 
expansion of (14) in the vicinity of A = 0 gives CD = CDS + h( Re) A + . . . . The departure from 
a linear dependence of those points is probably due to the errors in CD, which are then large 
relative to the values of CD - Cos (see figure 19). 
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-A 

FIQURE 21. Difference between measured drag and steady drag as a function 
I_ , g ( - A )  = - A .  D, Re = 3.2; <I, Re = 4.7;  0, Re = 6 ;  0, Re = 8.1; 
V, Re = 20.5; 0, Re = 51; +, Re = 77. 

of deceleration. 
A, Re = 10.5; 

C, - CDs for the data points shown in figure 19 are plotted versus A ,  exactly the same 
pattern is obtained. Therefore, within the accuracy of our experiments, we can write 

where the constant K is nearly unity. This equation represents an important result of 
this work in that it gives explicitly the dependence on acceleration of the drag coeffi- 
cient for rigid spheres accelerating in the uniform flow behind a weak ehock wave. 
However, while it might also provide a fair model for CD in similar types of unsteady 
motions, it does not apply to others. For example, the time average of the drag 
coefficient on a sphere executing translational harmonic oscillations is, according to 
(15), equal to CDs whereas the recent measurements of Karanfilian & Kotas (1978) 
show that it is larger than CDs. 
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FIGURE 2 .  Wavefront passage. (a) t = 24.9,us, (b )  t = 3 3 . 4 , ~ ~ .  

TEMKIN AND KIM (Facing p .  158)  
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FIGURE 4. Streams of water droplets. (a) D = 87 ,urn, (b )  D = 575 ,urn. 
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Plate 2 
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FIGURE 7.  Scattered-light photograph. D = 133 pm, uu2 = 264 om s-l. 
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Plate 3 
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FIGURE 8. Droplet trajectories in a typical test. 

Plate 4 
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FIGURE 13. Deformation at t w 0.450 ms. (a) We = 6,  (b)  We = 1.04, ( c )  We = 0.55. 


